
Reducing Uncertainty About Common-Mode Failures

i. L. Kassab performed this work while a graduate student at the College of William and Mary.

Jeffrey Voas, Anup Ghosh, Frank Charron
{jmvoas,aghosh,fhchar}@rstcorp.com

Reliable Software Technologies
21515 Ridgetop Circle #250

Sterling, VA 20166
http://www.rstcorp.com

Lora Kassabi

kassab@itd.nrl.navy.mil
Naval Research Laboratory

Center for High Assurance Computer Systems
4555 Overlook Avenue, SW, Code 5542

Washington D.C., 20375

Abstract

Multi-version programming is employed in fault-
tolerant computer systems in order to provide protection
against common-mode failure in software. Multi-version
programming involves building diverse software
implementations of critical functions. The premise of
building diverse versions is that the likelihood of a
programming error in one version causing a failure in an
identical manner as an error in another version is reduced.
Skeptics of multi-version programming have correctly
pointed out that common-mode failures between redundant
diverse versions can reduce the return on investment in
creating diverse versions.

To date, other than using historical data from other
projects, there has been no way to estimate the potential for
a given multi-version programming system to suffer a
common-mode failure. This paper presents an algorithm
and software analysis prototype to reduce the uncertainty of
whether software flaws in diverse versions can result in
common-mode failure. The analysis uses software fault-
injection techniques to subject one or more versions to
anomalous behavior. From this, we can predict how the
software will behave if real faults exist in the multiple
versions.

1. Diversity and Various
Perspectives

Although software systems made of redundant software
programs are fairly uncommon in the United States, they are
looked upon more favorably elsewhere. Airbus Industrie,
the European consortium which competes directly with
Boeing Co., uses diverse software programs for the A320/
A330/A340 electrical flight control systems. For example,
Airbus uses two (2) different types of computers for flight
control in the A320. The two computers, whose monikers

are SEC and ELAC, are designed and manufactured by
different equipment manufacturers using different
microprocessors, different computer architectures, and
different functional specifications. Each flight control
computer uses one channel for control and another channel
for monitoring. Since a different software program is used
for each of these channels on each redundant computer, a
total of four (4) different software packages are used in the
control and monitoring of the A320 flight control system
[15][4]. By achieving diversity in hardware and software,
Airbus hopes to mitigate the common-mode failure problem
in redundant computer systems.

Redundancy is also prevalent in nuclear power systems.
Digital instrumentation and control systems in nuclear
power plants employ independent protection systems to
detect system failures in order to isolate and shut-down
failed subsystems. The U.S. Nuclear Regulatory
Commission (NRC) has developed a position with respect
to diversity, as stated in the technical position document
“Digital Instrumentation and Control Systems in Advanced
Plants” [13]. Two excerpts from this document are
particularly relevant for requiring the assessment of
common-mode failures:

1. The applicant shall assess the defense-in-depth and
diversity of the proposed instrumentation and control
system to demonstrate that vulnerabilities to common-
mode failures have been adequately addressed. The staff
considers software design errors to be credible
common-mode failures that must be specifically
included in the evaluation.

2. In performing the assessment, the vendor or applicant
shall analyze each postulated common-mode failure for
each event that is evaluated in the analysis section of the
safety analysis report (SAR) using best-estimate
methods. The vendor or applicant shall demonstrate

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Reducing Uncertainty About Common-Mode Failures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

adequate diversity within the design for each of these
events.

The Canadian Atomic Energy Control Board (AECB)
recognizes the danger of common-mode failures in nuclear
control applications as well. The AECB requirements for
achieving software diversity are succinctly stated in draft
guide C-138, “Software in Protection and Control Systems”
as [1]:

To achieve the required levels of safety and reliability,
the system may need to be designed to use multiple,
diverse components performing the same or similar
functions. For example, AECB Regulatory Documents
R-8 and R-10 require two independent and diverse
protective shutdown systems in Canadian nuclear power
reactors. It should be recognized that when multiple
components use software to provide similar
functionality, there is a danger that design diversity may
be compromised. The design should address this danger
by enforcing other types of diversity such as functional
diversity, independent and diverse sensors, and timing
diversity.

Clearly these two nuclear regulatory bodies have
recognized common-mode failures as a critical weakness in
redundant component implementations of nuclear control
systems. It is interesting to note that they recommend
preventative design measures as well as evaluative measures
to address the common-mode failure problem.

From industry recommendations, the U.S. Federal
Aviation Administration (FAA) has formulated a different
perspective on redundancy. Their position is that since the
degree of protection afforded by design diversity is not
quantifiable, employing diversity will only be counted as
additional protection beyond the already required levels of
assurance [6]:

The degree of dissimilarity and hence the degree of
protection is not usually measurable. Probability of loss
of system function will increase to the extent that the
safety monitoring associated with dissimilar software
versions detects actual errors or experiences transients
that exceed comparator threshold limits. Multiple
software versions are usually used, therefore, as a
means of providing additional protection after the
software verification process objectives for the software
level have been satisfied.

The U.S. Office of Device Evaluation of the Center for
Devices and Radiological Health of the U.S. Food and Drug
Administration (FDA) has issued a report that applies to the
software aspects of pre-market notification submissions for

medical devices [7]. The FDA does not dictate any
particular approach to safety, nor does it dictate specific
software quality assurance and development procedures.
Because there is no specification on how safety is to be
achieved nor demonstrated, the FDA provides no guidance
on redundancy and diversity.

2. Software Composition

Fault-tolerant computer systems that use redundancy are
employed in a wide-range of safety-critical and ultra-
reliable applications, including nuclear control, flight
control, and medical devices. In systems where software is
replicated on redundant platforms, a failure resulting from a
flaw in software on one platform is certain to result in other
redundant platforms for the same input, since the replicated
software has replicated flaws. In these types of fault-tolerant
architectures, redundant hardware platforms only protect
the system from anomalous or transient errors resulting
from hardware faults or external corruptions. The reliability
afforded such a system by the software can be modeled as a
series reliability block diagram, because the reliability of
the multiple software versions is only as good as the
reliability of a single version.

In order to provide some level of protection against
redundant software programs failing identically, diverse
multi-programming, also known as N-version
programming, has been advocated [2][3]. Other references
that more fully discuss N-version programming are [11] and
[12]. In N-version programming, different software
versions, written to the same specification but developed
independently, are run in parallel. If there is no correlation
between version failures, then the system’s dependability is
essentially the product of version dependabilities—which
has the potential for construction of nearly perfect systems
from imperfect programs. Diversity in program versions
attempts to prevent redundant programs from failing
identically, or from failing simultaneously. To protect
against common design errors, diversity in design is
employed. Functional diversity involves specifying that
different programs have different functional requirements.
For example, one program might do a linear search, while
another performs a binary search. The goal of finding the
element in a list might be the same, but the algorithm
specified will be different. The techniques specified in this
paper are well-suited to both types of software diversity.

Despite the diverse software implementations, it is
believed that common errors compromise the independence
between multiple versions that is needed to make diversity
worthwhile [9][5]. By definition, a common-mode failure
(CMF) occurs when two or more software versions fail in
exactly the same way for the same input. Common-mode

failures are said to occur when there exists at least one input
combination for which the outputs of two or more versions
are erroneous, and the outputs are identical for all possible
input combinations [8]. Thus, if two or more versions
respond to all inputs in the same way, and there is at least
one input combination that causes them both to respond
incorrectly, then a common-mode failure has occurred.
Since it is a practical impossibility to test that all versions of
a program will respond identically to all inputs, we loosen
the definition for common-mode failure by defining a
“single input” common-mode failure. A single input CMF
occurs when there exists at least one input for which the
outputs of two or more versions of a program are identically
incorrect. This definition loosens the restriction that the
outputs for all inputs must also be identical. Note that CMFs
do not have to occur only from identical faults, however,
that class of problem is the predominant cause of CMFs. In
this paper, we develop techniques that allow prediction of
CMFs that result not only from identical faults, but also
from uncorrelated anomalies in different combinations of
versions.

Knight and Leveson demonstrated that different
programmers can make the same logical error [9]. An
additional result involved cases where different logical
errors yielded common-mode failures in completely distinct
algorithms or in different parts of similar algorithms. The
technique presented here is concerned with these “different
logical errors”. The technique can determine if a flaw in one
function in one version can result in a common mode failure
with a flaw in a different function in another version. The
technique can be applied equally to faults in similar
functions, as well, though this outcome has less value since
the likelihood of CMFs is greater for faults in similar
functions. The goal of this analysis is to provide both an

indication of the potential for common-mode failures to
occur and the statements of where faults could hide that
cause CMFs. This information, in turn, can be used by
developers of multi-version fault-tolerant systems to make
them more robust against common-mode failures.

3. Assessing the Likelihood
of Common-mode Failures

Recognizing the importance of predicting the potential
for common-mode failures, we have developed an
algorithm and a prototype software analysis tool to observe
common-mode failures produced by combinations of
simulated programmer faults. Consider the simple N-
version system depicted in Figure 1. This figure illustrates
an architecture of an N-version system that is composed of
N independent programs executing identical inputs sampled
from the input space. Each program consists of four
functions labeled through that were coded from a
common specification. To achieve fault tolerance through
replication, each version in Figure 1 would be an identical
replica. In this case, software flaws in one version will be
present in each of the other versions. An input that
triggers a flaw in one version that ultimately causes a faulty
output to result will guarantee a common-mode failure
between the identical versions. Fault tolerance through N
replicated versions can only be achieved when faults that
affect one version do not affect another, e.g., a hardware
fault or external corruption.

To achieve fault tolerance through diversity, each version
implements the individual functions in a diverse manner.
The rationale behind programming diverse versions is to
prevent programming errors in different versions from
resulting in common failures. For example, system fault

α δ

N 1–

 Figure 1: N-version system architecture

Input Space

A

Version 1

Version N

voter

System

result

B

C

α β γ δ

A A A

A

α β γ δ

A A A

tolerance is sought from flaws in Version 1 (in Figure 1) that
do not exist in a majority of the other versions. A voter
decides which output to release from the N programs based
on a pre-specified algorithm. The reliability of an N-version
system can be defeated by problems in two areas: (1)
common-mode failures between a multiple versions, and (2)
flaws in the voter that result in incorrect or unreliable
outputs. The approach presented in this paper addresses one
class of anomaly that can contribute to (1). An approach to
address concern (2) is developed in [17].

In our approach, a fault-injection--based method is used
to simulate uncorrelated programmer flaws in diverse
versions. The effect of the simultaneous faults is observed
and a count of the resulting common-mode failures is
tallied. If the frequency of common-mode failure
observations is unacceptably high, then either different
versions of the program can be swapped in and re-analyzed,
or additional fault-tolerant mechanisms can be added to
reduce the likelihood of common-mode failure, e.g., by
diversifying versions further or by adding additional
versions. It is important to realize that not all common-
mode failures will defeat an N-version system. For example,
a 5-version system that employs a majority voter will be
able to tolerate a common-mode failure between at most
two versions. Therefore, common-mode failures can be
ranked by severity depending on the system configuration
and the voter algorithm. In a majority voting system, a
common-mode failure involving the majority of versions
will be classified as severe, while a common-mode failure in
a minority of versions may be tolerable. If the analysis
reveals that common-mode failures are unlikely or that the
voter is survivable to multiple component failures, then it
can be argued that placing redundant software versions in
parallel can increase the reliability of the system, even if we
are unsure about or dissatisfied with the quality of the
components.

3.1 Anomalous events

Software that does not experience any problems in its
program state during execution cannot behave dangerously.
Only when software encounters problems that corrupt its
program state can things go awry. Anomalous events (or
anomalies) are problematic events that occur during
software execution in any state of the software that has the
potential to alter the output of the software such that the
output is different than if the events had not occurred.
Anomalies can be caused by internal code defects or
external failures that behave as input to the program. The
number of different anomalies that software may be forced
to experience during its lifetime is effectively infinite, and
the members of this set are unknown. Software fault-
injection simulates anomalous events in the execution of
software under specific input conditions.

For N-version systems, the key failure class to be
prevented against is common-mode failure. The key
anomaly classes to simulate using fault injection are: (1)
programmer faults and (2) simulated specification errors
and ambiguities. It is easy to understand how errors in
specification for an N-version system can result in common-
mode failures between diverse versions. For example, if the
threshold temperature at which a fail-safe nuclear rod
cooling system trips is specified in error, then it is easy to
imagine how three diverse, redundant fail-safe systems will
fail identically because of the incorrectly specified
threshold. Section 3.3, addresses the issue of errors in
specification and introduces a technique for assessing the
effect of specification errors and ambiguities on the
resulting system output. What is non-intuitive to understand
and difficult to defend against is how unrelated flaws in
programming can result in identically incorrect outputs
(common-mode failures). Recall that the goal of
programming diverse versions was to tolerate uncorrelated
flaws in individual versions. There is no assumption that
every version is correct, but rather the hope is that the flaws

 Figure 2: N-version system with simulated faulty versions.

Version 1

Version N

Voter

System

Result

Fault Injection

A

A
B

C

Input Space

in different versions are unique and will be tolerated by the
voting algorithm.

It can be postulated that because of the complexity of
software and the number of different failure modes of
software, flaws in diverse versions in possibly different
functions may combine in unexpected ways to result in
common-mode failure. For the example illustrated in
Figure 1, consider a software flaw in some function in
Version 1. Next, consider a flaw in a different function in
Version N. It is unknown if the flaw in function can
combine with the flaw in function to result in a common-
mode failure. To our knowledge, there has been no
technique for testing this hypothesis for a given multi-
version system, until now.

The new analysis technique presented in this paper tests
this hypothesis. This technique simulates flaws in multi-
versions and observes the resulting outputs. If the simulated
flaws result in identically incorrect outputs (for the same
input), then we postulate that there is potential for an actual
common-mode failure if actual flaws exist in the statements
that were perturbed.

In order to detect the potential for common-mode
failures between multiple diverse versions, corrupted states
that mimic the effects of programmer faults are injected
within executing versions in statements corresponding to A
in Figure 1. The effect of the corrupted states in each
version is observed at the output of each version (location B
in Figure 1). For a given input to the multiple versions, if
two or more versions produce an output that is both identical
and different from the output that would be produced
without fault injection, then a “single input” common-mode
failure is said to have occurred due to the corrupted states.
The analysis does not reveal whether a common-mode
failure would occur in practice; rather the analysis only
reveals the potential for a common-mode failure occurring
in the future.

 It is important to realize that the common-mode failure
likelihood assessed through analysis will vary from
implementation to implementation as well as with the inputs
used and the corruptions injected. No warranties are given
with respect to the representativeness of the corruptions.

The fault-injection process involves injecting anomalies
into a piece of software using instrumentation.
Instrumentation typically involves inserting code into the
code that is being analyzed, and then compiling and
executing the modified (or instrumented) software. In this
paper, we will simulate anomalies using instrumentation
that is customized for code defects, which are caused by
programming errors or design defects.

3.2 Simulating faulty versions

In Figure 2, the highlighted portion represents the
versions, which are where instrumentation will be inserted
to simulate coding defects. The goal is to predict whether
problems that manifest themselves in the versions (at
locations A in Figure 2) can propagate out of the versions
to location B—the interfaces between the versions and the
voter. To simulate faulty software, instrumentation is
traditionally employed in one of two methods: state
perturbation and mutation. State perturbation usually adds
code to modify the program states created by the original
code. Mutation changes the syntax of existing code
statements. Explanations for how to implement these two
approaches can be found in [19] and [14]. The work
described in this paper only uses state perturbation, though
the algorithms to follow do not preclude using mutation
instrumentation.

In a multiple-version system, an interesting
combinatorics problem arises during fault injection. The
problem is which combination of versions will fault-
injection be applied to. From mathematics, we know the
number of combinations of n distinct objects taken r at a
time is given by: . For an N-version
system, there are total
combinations. This total should not be too large since N is
usually a small odd integer, such as three, five or seven.

 An algorithm for detecting single input common-mode
failures is presented in Figure 3. The algorithm is shown for
three versions for clarity, without loss of generality in N
versions. This algorithm provides warnings each time the
output satisfies the definition for a single input common-
mode failure. As defined earlier, a “single-input” common-
mode failure is a common-mode failure for one input case,
as opposed to identical outputs for all inputs.

The algorithm calls for the execution of a set of inputs on
all versions in two different phases: the original run without
state perturbations and the perturbed run that employs fault
injection. In the original run, the outputs from each version
for each input is temporarily stored. Each version is then
executed again on the same input, but is subjected to fault
injection. This execution is called the perturbed run [19]. If
the output from the perturbed run is different from the
original run, then the perturbed output is stored for a later
comparison (in Step 6.0 of the algorithm). This process is
repeated for all instrumented statements in all versions for
each input used. A comparison of all perturbed outputs for
a given input is performed to determine if a single input
common-mode failure resulted. A single input common-
mode failure is counted when the perturbed outputs are
identical and different from the original outputs for a single
input.

α
δ

α
δ

n! n r–()! r!⋅()⁄
N! N r–()! r!⋅()⁄

r 1=

N∑

Recall that N-version programming is a method to build
a more reliable system from potentially unreliable parts.
The premise of N-version diverse programming recognizes
that not every version will be correct. While one or more
versions may have flaws, a flaw in one version can be
compensated by a majority of other versions that do not
contain that same flaw. The assumption is that as long as the
majority of versions do not fail identically on the same
input, then common-mode failures may be avoided. This
assumption can be tested for a given N-version system by
the analytical technique presented in Figure 3.

3.3 Simulating Errors in Specification

To this point, we have focused on simulating
uncorrelated programmer faults. One of the greatest
concerns when deploying an N-version system, however, is
the potential for specification errors to cause correlated
programmer faults that, in turn, produce common-mode
failures. Errors in specification certainly have the potential

to result in incorrect software outputs. In N-version
programming systems, presumably each independent
programming team works from an identical specification of
the application problem. An error in the specification will
map into N diverse implementations of the same error. If all
N versions were to correctly implement the erred
specification, then the potential for common-mode failures
is quite high. N-version programming was designed not
necessarily to provide protection against specification
errors, but rather to protect the system against programming
errors. Even so, ambiguous or ill-defined specifications may
also lead to diverse implementations that are indifferent to
specification errors.

 Specification errors are simply specifications that are
either incomplete, ambiguous, or incorrect. Given the
uncertainty in the effect of specification errors on N-version
systems, we have also developed a method that observes the
impact of simulated specification errors or specification
ambiguities on the voter. This observation is made possible
by a family of fault injection algorithms customized for

1.0 Create a set of input vectors, I , to be run on versions A, B, & C.
2.0 Instrument all analyzeable statements in A, B, & C for fault perturbation.

3.0 Execute A, B, & C unperturbed on input .

4.0 Temporarily store the resulting outputs, , for A, B, & C.

4.1 Designate the output o resulting from the execution of A on i, . Similarly, designate and .

5.0 Execute A, B, & C perturbed on input .

5.1 For each i, save the set of perturbed outputs , , and where , , and .

5.2 Designate the sets resulting from 5.1 as .

6.0 For each input i, compare .

6.1 Record all non-empty instances of , , , and .

6.2 Increment CMF counter for each instance.

6.3 Record each statement that resulted in the CMF: .

i I∈

o O∈

Aoi
Boi

Coi

i I∈

A'oi
B'oi

C'oi
A'oi

Aoi
≠ B'oi

Boi
≠ C'oi

Coi
≠

PAi
PBi

PCi
, ,{ }

PAi
PBi

PCi
, ,{ }

PAi
PBi

∩{ } PAi
PCi

∩{ } PBi
PCi

∩{ } PAi
PBi

PCi
∩ ∩{ }

FAi
FBi

FCi
, ,{ }

A B C

voter
system output

system input

Fault Injection

 Figure 3: Algorithm 1: Detecting the presence of common-mode failures in multiple version programming.

specification anomalies. If the impact on the voter is
negligible from this class of simulated anomalies, that
suggests that the likelihood of common-mode failures from
real specification anomalies might be less severe. In the
report [17], this specification-based analysis provides
information concerning which portions of the specification,
if even slightly wrong or misinterpreted, will lead to system
failures. Results from using this specification-based
analysis are published in [18]. This provides insight as to
which directives in the specification have the most impact
on the system’s functionality. This technique provides a
sensitivity analysis of the effects of errors or ambiguities in
the specification on the voter of an N-version system. For
those persons charged with verifying requirements, this
information could prove to be useful.

4. Experiment

In order to study the usefulness of the algorithms that
simulate uncorrelated programmer faults, a prototype N-
version analysis tool was developed and applied to a set of
diverse student programs. The prototype tool currently only
implements the analysis of common-mode failures due to
programming errors in multiple versions. The prototype
tool implements algorithm shown in Figure 3. The
experimentation used three independent versions of a
controller for managing the traffic lights and turn arrows for
a particular intersection. These versions were written by
students of Prof. Adam Porter at the University of
Maryland, and are based on a specification developed by
Porter. The specification is not formal, and since these were
student versions, it is likely that the groups communicated.
Further, these programs were not designed according to N-

version programming principles. The point of this
experimentation is not to assess the quality of a fault-
tolerant traffic controller, but rather to demonstrate the types
of results produced by an implementation of the common-
mode failure analysis algorithm. While the traffic
intersection is real, the programs are fictitious in that they
are not deployed in an actual traffic controller. The objective
of the experiment, however, is to gauge the applicability of
the developed algorithms and prototype tool for assessing
the common-mode failure likelihood. As the wisdom of this
type of analysis becomes apparent, it is expected that the
analysis will be applied to “real-world” fault-tolerant
systems from industry as they become available.

Figure 4 depicts the intersection that is controlled by the
traffic lights. Traffic can move along this road going north-
bound (N), south-bound (S), east-bound (east to north (E),
east-to-south (ES)), and north-to-west (NW). There is a
traffic light controlling all north-bound, south-bound, and
east-bound lanes. There are also two turn arrows, one for the
north-to-west turn lane and for the east-to-south lane.

 Each software version requires inputs from the user, at
which point the software will generate the appropriate
traffic light controls (outputs) for all lanes at the
intersection. This cycle may iterate indefinitely. User inputs
represent physical sensors under the roadway. There are
four (4) sensors. One for all east-bound (E) lanes, one for all
south-bound (S) lanes, one for the north-bound (N) lanes
and one for the north-to-west (NW) turnout lane. A sensor
emits an input signal only if at least one car is in the
corresponding lane. The rate at which sensors emit signals
is arbitrary. At every state change the system provides
several outputs. These outputs signify the color (GREEN,
YELLOW, or RED) of every traffic light, and indicate
whether or not every traffic light is illuminated.

The traffic controller for the intersection depicted in
Figure 4 was implemented by a number of different
students. The implementation of the traffic control functions
were required to adhere to standard calls from the traffic

NW N

S

E
ES

Figure 4: Traffic controller application

Version
Combination

Number of
Potential Common-

mode Failures
Detected

156

631

143

101

Table 1 : Results from analyzing traffic control
system for common-mode failures

A B∩

A C∩

B C∩

A B C∩ ∩

controller main C function. Three different versions were
hooked together in main and called to calculate the traffic
controller state for each input. A voter was coded to execute
a majority vote on the state of the traffic controller. The
common-mode failure analysis algorithm of Figure 3 was
applied to the three implementations to determine the
likelihood of common-mode failures to simulated flaws in
each version. Each test case consisted of a number of
sequential random inputs to the traffic controller
corresponding to the (N,S, E, and NW) sensors at the
intersection (Step 1.0 in Figure 3). Each version was then
executed with a given input in an unperturbed manner and
the unperturbed outputs were temporarily stored (Steps 3.0
and 4.0). Next, the prototype tool injected faults into the
execution of each version and determined if perturbed
outputs were different from the unperturbed outputs for
each input (Steps 5.0, 5.1, 5.2). Finally, the perturbed
outputs between different versions were compared to
determine if any were identically incorrect (Steps 6.0 and
6.1). The common-mode failure counter was incremented
for each identically incorrect output (Step 6.2).

The results from the applying the common-mode failure
analysis to the fault-tolerant traffic light control system are
summarized in Table 1. The results show the number of
common-mode failures detected through fault injection in
the multiple versions for all test cases. As a result, many
common-mode failures were repeatedly observed. Using
the frequency of common-mode failure detection as a
metric, it can be asserted that the higher the frequency of
detecting common-mode failures through repetitive random
testing, the higher the likelihood that common-mode
failures will result in the future execution of the system.
From the table, it is clear that versions A and C have a higher
likelihood of common-mode failure than the other versions
in combination. The results showing over 100 common-
mode failures detected between all three versions is also
significant. Another interesting metric that we hope to
capture but have not yet is how many of these potential
common mode failures will actually cause system failure.

In order to provide software developers a means for
improving the fault tolerance of the system under analysis,
the program statements where common-mode failures
originated (Step 6.3 in Figure 3) are presented together with
their distribution in Figure 5 and Figure 61 (at the end of the
document). The analysis reveals the potential vulnerable
statements in the source code for the three versions where
common-mode failures might originate. The program
statements where common-mode failures were detected

1. These results have not been manually validated
due to the complexity involved in manual valida-
tion.

along with the frequency of detection between versions A
and B are shown in Figure 5. By examining this histogram,
the problem areas in the code can be quickly assessed. The
most frequent common-mode failures in statement pairs
(B,A) were (432,349), (437,355), and (437,352). Figure 6
shows a similar diagram for common-mode failures
occurring between versions A, B, and C. The critical
statements in versions (C,B,A) for common-mode failures
are (832,437,355), (832,437,352), and (964,432,349).
Notice that the most common (B,A) pairs appeared in the
most common (C,B,A) triples. The same common-mode
failures appear most frequently throughout the analysis.
Inspection of the programs revealed that the majority of the
common-mode failures were found in the different
implementations of the traffic light control logic. This result
should be somewhat unsurprising since all three versions
worked from the same specification of the traffic light
control logic.

It is interesting to note that versions A and B are most
similar in implementation, while version C diverges
significantly from versions A and B in implementation.
Despite the diverse implementations, the frequency of
common-mode failures was highest between versions A and
C. Further examination of these two programs revealed that
a very large number of common-mode failures detected
between versions A and C were caused by anomalies
injected in their respective initialization functions. These
results suggest that despite seemingly diverse
implementations between versions, common-mode failures
are possible and even likely in certain functions
implemented similarly in otherwise diverse programs. In
contrast, the initialization function coded in version B
departed from versions A and C and as a result, few
common-mode failures were found involving the
initialization functions between version B and the two other
versions. The type of common-mode failure observed most
often between versions A and B was due to faults injected in
nested conditional or case statements. The “drop-through”
return value in these expressions was often correlated
between versions A and B in spite of diverse
implementations of the control expression in the conditional
statements. This correlation resulted in common-mode
failures at the outputs of the versions. By interpreting these
results, system developers can determine if and where
potential common-mode failures might originate from flaws
in the code and then apply mitigating measures.

5. Conclusions

The premise underlying this paper is that uncorrelated
programmer errors in diverse versions can result in
common-mode failure that will defeat the voter of an N-

version programming system. It is intuitive that supposedly
equivalent programs that were built by different teams of
programmers will possess a reduced likelihood of common-
mode failure. To date, there has not been a technique for
determining the extent to which diverse versions from a
specification can mitigate the effects of common-mode
failure. The algorithm and prototype described in this paper
provide a new perspective for determining where
uncorrelated programmer errors can enable common-mode
failures. The results from the analysis show where in diverse
programs that common-mode failures are more likely to
occur. Even if we accept the hypothesis that diverse
programs do indeed reduce the likelihood of common-mode
failure, then the experimental results afforded by the
prototype can aid in deciding how worrisome common-
mode failure is for a particular N-version system.

The analysis results presented in this paper are a
preliminary application of the common-mode failure
analysis algorithm. Further research currently underway is
assessing the tolerance of the system to simulated
specification errors. The potential for decreasing the
common-mode failure likelihood by swapping out one
version for another may also be explored.

Acknowledgments
The authors thank Adam Porter of the University of
Maryland for providing us with the diverse versions used in
the analysis and supplying us with Figure 4. This work has
been partially supported by DARPA Contract F30602-95-
C-0282 and NIST Advanced Technology Program
Cooperative Agreement No. 70NANB5H1160.

6. References

[1] Atomic Energy Control Board, Draft Regulatory
Guide C -138, 1996.

[2] A.A. Avizienis, “The Methodology of N-version
Programming”, Software Fault Tolerance,
edited by M. Lyu, John Wiley & Sons, 1995,
pp. 23-46.

[3] A.A. Avizienis and L. Chen, “On the
Implementation of N-version Programming
for Software Fault Tolerance During
Execution”, Proceedings of the IEEE
COMPSAC 77, November 1977, pp. 149-155.

[4] D. Briere and P. Traverse, “Airbus A320/A330/
A340 Electrical Flight Controls -- A family
of fault-tolerant systems”, Proceedings of the
23rd Fault Tolerant Computing Symposium,
pp. 616-623, Toulouse, FR, June 1994.

[5] S. Brilliant, J. Knight, and N.G. Leveson,
“Analysis of Faults in an N-version
Software Experiment”, IEEE Transactions on
Software Engineering, SE-16(2), February,
1990.

[6] Federal Aviation Authority, “Software
Considerations in Airborne Systems and
Equipment Certification”, Document No.
RTCA/DO-178B, RTCA, Inc., 1992.

[7] U.S. Food and Drug Administration, Reviewer
Guidance for Computer Controlled Medical
Devices Undergoing 510(k) Review, 1991.

[8] B.W. Johnson, Design and Analysis of Fault
Tolerant Digital Systems, Addison-Wesley
Publishing Company, Reading, MA, 1989.

[9] J. Knight and N.G. Leveson, “An Experimental
Evaluation of the Assumption of
Independence in Multiversion
Programming”, IEEE Transactions on
Software Engineering, SE-12(1):96-109,
January, 1986.

[10] J.L. Lions, “Ariane 5 Flight 501 Failure”, Report
of the Inquiry Board, Paris, July 19, 1996.

[11] M.R. Lyu and Y. He, “Improving the N-Version
Programming Process Through the
Evolution of a Design Paradigm”, IEEE
Transactions on Reliability, 42:2, June, 1993,
pp. 179-189.

[12] D.F. McAllister and M.A. Vouk, “Fault-Tolerant
Software Reliability Engineering”, in
Handbook of Software Reliability Engineering,
edited by Michael Lyu, McGraw-Hill, New
York, NY, 1996, pp. 567-614.

[13] U.S. Nuclear Regulatory Commission, Draft
Branch Technical Position, 1994.

[14] A.J. Offutt, Automatic Test Data Generation, Ph.D.
Thesis, Georgia Institute of Technology,
Atlanta, GA, 1988. Technical report GIT-ICS
88/28.

[15] P. Traverse, “Dependability of Digital
Computers on Board Airplanes”,
Proceedings of the First Dependable Computing
for Critical Applications Conference, Santa
Barbara, CA, August, 1989.

[16] J. Voas, A.K. Ghosh, G. McGraw, and K. Miller,
“Gluing Together Software Components:
How good is your glue?”, Proceedings of the

Pacific Northwest Software Quality Conference,
Portland, October 1996.

[17] J. Voas, A.K. Ghosh, F. Charron, and L. Kassab,
“Reducing Uncertainty About Common-
mode Failures” RST Technical Report
#RSTR-96-002-1101.

[18] J. Voas and L. Kassab, “Simulating Specification
Errors and Ambiguities in Systems
Employing Diversity”, In Proceedings of the
1997 Pacific Northwest Software Quality
Conference, Oct. 1997.

[19] J. Voas and K. Miller, “Software Testability: The
New Verification”, IEEE Software, 12(3):17-
28, May, 1995.

Common-Mode Failures Between Versions A & B

0

5

10

15

20

25

30

35

40

45

50

432
349

434
349

439
349

451
349

437
352

437
355

458
355

437
382

456
385

463
385

439
388

461
388

432
423

449
423

456
423

463
423

472
423

484
423

432
425

449
425

456
425

463
425

472
425

484
425

458
428

484
428

Program Location Pairs

N
um

be
r

of
 C

M
F

s

 Figure 5: Observed common-mode failures between versions A and B

Common-Mode Failures Between A, B, & C

0

5

10

15

20

25

964
432
349

964
434
349

806
439
349

964
439
349

964
451
349

832
437
352

832
437
355

939
437
355

832
458
355

939
437
382

661
456
385

661
463
385

964
439
388

964
461
388

661
432
423

661
449
423

661
456
423

661
463
423

661
472
423

661
484
423

661
432
425

661
449
425

661
456
425

661
463
425

661
472
425

661
484
425

628
458
428

979
458
428

628
484
428

979
484
428

Program Location Triples

N
um

be
r

of
 C

M
F

s

 Figure 6: Observed common-mode failures between versions A, B, and C for various program location triples.

